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Abstract—In social networks, individuals and systems work
side by side. While individuals make decisions to filter or forward
information, systems also prioritize and sort information to
manage and assist individual information processing. It has long
been argued that system level manipulations can reduce access
of individuals to novel information. In this paper, we study
how sorting of messages in one’s inbox can help or hinder
access of diverse information in the network through simulation
of cognitively bounded actors. We show that first-in-first-out
(FIFO) method of message sorting is ideal in bursty information
arrival rates and in networks with lower diameter. Last-in-first-
out (LIFO) method of message sorting is ideal for streaming
information arrival, but leads to information overload in bursty
scenarios by creating too many redundant copies of some of the
information in the network. In short, the ideal message sorting
method that enhances access to diverse information depends on
the network type and information access patterns.

I. INTRODUCTION

We live in the age of information overload. Just as Dabbish
and Kraut define email overload [1], information overload
is when “users perceive that their own use of social or
communication platforms has gotten out of control because
they receive and send more information than they can handle,
find, or process effectively.” Users increasingly use social
networks for more than just communicating with peers, but for
gaining knowledge of current events, expert opinion, political
engagement, and social movements. As a result, information
becomes available from an increasing number of networked
sources instead of a few reputable news sources that were
typically used in the past. This leads to increased duplication
of information within the network, making it more difficult
to gain access to unique and diverse pieces of information.
This problem is complicated further by algorithms that filter
and rank information based on different assumptions and
motivations. For example, an ongoing debate is whether the
Facebook algorithms that rank content based on user’s es-
timated interests and strength of their friendship ties hurts
access to diverse content, which has been said to be asso-
ciated with “adopting more extreme attitudes over time and
misperceiving facts about current events” [2]. This idea of
the social harm caused by homophily based algorithms has
gained more than just niche academic attention, but also some
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mainstream attention, showing up on podcasts such as NPR’s
“Note to Self [3].” In particular, “Note to Self” points out that
many users are purposefully not engaging with ideologically
similar information in an attempt to diversify their newsfeeds.
Ultimately, the choice of algorithm to rank content is likely
strongly dependent on what specific types of information a
given site is used for, but in general the diversity of valuable
content is desired. Do these relevence algorithms improve or
harm user’s access to information? More generally, how do
algorithms to sort information impact access to information?

To study this problem, we consider an idealized scenario
in which a set of cognitively bounded actors use the same
information system which sorts the messages received by
them. Actors process the information as it is sorted and
share with other actors in the network. We track how widely
information is disseminated in the network. We find big
differences between first-in-first-out (FIFO) and last-in-first-
out (LIFO) message sorting schemes. While FIFO is ideal
in events creating a burst of messages and LIFO is ideal in
situations where information becomes available over a longer
time period. In networks with smaller diameter, access to
diverse information improves for FIFO sorting, while LIFO is
generally uneffected. Our findings support an adaptive strategy
for inbox management: using LIFO in most cases but shifting
to FIFO in times of high information load especially within
networks with low diameter.

II. RELATED WORK

Rodriguez, Gummadi, and Schoelkopf [4] investigate the
notion of information overload as it pertains to social conta-
gions on Twitter, finding evidence of user information process-
ing capacity thresholds on incoming and outgoing information.
This work illustrates that when users hit this information
overload threshold, they begin to prioritize information sources
rather than simply using the LIFO feed of tweets. Also,
empirical studies [4] illustrate that “background traffic” has an
impact on “users’ queueing delays”’; defined as “the time users
take to process information they receive.” In contrast with this
work, we do not directly investigate information overload, but
the impact of message sorting on information propagation in
situations involving information overload.

A common concern in networks is whether individuals are
exposed to diverse sets of ideas [2] or whether individuals get



news that agree with their ideological view in online social
networks like Facebook [5]. Tufekci [6] points out the need
to deeply consider what things we “turn over” to an algorithm
and how that consideration can change how we think about
algorithims like a news feed sorting algorithm. Along these
same lines, Eslami et al developed a system that compares
Facebook’s algorithmically curated news feed to a unsorted
news feed [7]. Our approach is more general as we concentrate
on the direct impact of message sorting in the dissemination of
information in the network. We do not study ideology based
filtering or homophily based sorting of methods. These are
future extensions of our work, building on the foundation of
this paper.

III. PROBLEM SETTING

In this paper, we consider a model in which a set of actors
share information with each other along undirected network
ties. We assume actors obtain information, called factoids (or
messages) in our model, from outside sources and share it
with their neighbors in the network. For simplicity, we assume
each new factoid is known to only one actor initially. Actors
disseminate information by processing them first and copying
it to their neighbors. Factoids are sent verbatim, similar to a
rewteet. We track the number of unique factoids actors come
to know as a result of this process. The more factoids the
actors have seen, the better informed they are. Our aim is to
find conditions that improve or hinder the dissemination of
novel and diverse information in the network.

a) Actor characteristics: Actors in the simulation have
two mutable attributes: capacity and propensity to send, which
are both fixed throughout the simulation. Capacity (C) is the
number of factoids an actor processes at any one simulation
step, which is set to 1 in this paper modeling cognitively
bounded actors.

For each factoid the actor processes, she decides randomly
whether to send it or not, depending on her propensity to send
(ps). If a factoid is sent, it is copied to all the neighbors. The
information received from different actors arrive in random
order removing the possibility of bias towards a specific actor.
Same factoid may be received multiple times from other actors
and reprocessed. However, an actor will not send the same
information twice.

b) Inbox sorting: Actors use a software system that
allows them to organize their messages. All factoids that are
yet to be processed are put in their inbox which are are sorted
using one of the two basic methods: (i) LIFO (last in first
out) sorts messages by the reverse order they are received in,
the latest message on top, similar to Twitter. (ii) FIFO (first
in first out) sorts messages in the order they are received in,
the oldest message on top. This is a common option in many
email applications as well as LIFO.

c) Simulation Model and Performance Measures: Each
simulation runs a fixed number of steps. Actors are connected
through a network of ties which are fixed throughout the
simulation. If information is available at the beginning of the
simulation, it is distributed to the actors randomly. At other

simulation steps, actors may obtain new information from
outside of their network and share it within the network before
other information in their inbox. In other words, agents process
what is in their inbox normally, unless their attention is shifted
to new information. This design choice is intuitive as real-life
social network users process and share information they find
outside of the network before processing other information in
the newsfeed. Basically, a user would not “hold on” to a news
story she wants to share until she scrolls through and processes
her newsfeed.

At each step of the simulation, all actors will act at the
same time, removing a factoid from their inbox and decide
whether to send it or not. After all actors have finished
their send actions, sent factoids are placed in the inboxes
of the recipients. Given this model, we track a number of
performance measures at each simulation step such as the total
number of distinct factoids known by the agent and the total
number of agetns sending information at any point in time.

d) Setup: In this work, we use the Watts-Strogatz Small
World model to generate the underlying network structure as it
is easier to vary diameter and modularity while holding density
fixed. All networks have 256 nodes and the same density (10
neighbors per node in average), all actors will have capacity
1 and 0.6 propensity to send, unless stated otherwise.

We consider two main scenarios for arrival pattern of
information as shown in Table I. Total number of messages at
the end of simulation is identical in both cases.

In the burst scenario, all factoids arrive in the beginning of
the simulation and are distributed randomly to the actors. This
models a case of intense activity and attention by the actors,
such as after a major event. There are lot of different pieces
of information and actors are interested in learning as much
as possible from the network.

The second scenario involves streaming data, in which new
information enters the network through all the actors in the
network at regular time intervals. The actors start with some
small set of factoids already in their inbox, then randomly
generate small set of factoids over time. This second scenario
models a period of steady activity, actors process information
from network or bring new information throughout a period
of time. Unless otherwise stated, simulations will involve
5000 messages (factoids) with a single copy of each. With a
propensity to send of 0.6 and 5000 factoids, we expect about
3000 messages to circulate in the network in the best possible
case.

Type Details
Burst 5000 messages in a single burst at the beginning of simulation
Stream 5000 messages streamed at 1 message per 5 simulation steps,

with 500 messages randomly distributed in the beginning of
simulation

TABLE I
INFORMATION ARRIVAL PATTERNS CONSIDERED IN THIS PAPER.
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Fig. 1. Number of facts known by an actor for different amount of
information in the network and number of actors sending information for
5000 factoids in the network over time for burst (top) and stream (bottom)
information arrival types using FIFO/LIFO inbox sorting methods.

IV. RESULTS

In this section, we illustrate the various trade offs of
different information arrival and inbox sorting patterns, along
with the impact of network structure. Each experiment is done
50 times and the results are averaged.

1) Basic Sorting, Burst Arrival: First, we explore how
LIFO and FIFO inbox sorting methods impact access to
diverse information in networks. In these experiments, we
compare LIFO and FIFO sorting using the burst information
arrival setting described in Table I, but vary the number of
factoids between 500, 5,000 and 50,000.

As shown in Figure 1 (a), LIFO and FIFO perform roughly
the same in disseminating information when there is very little
information in the network (relative to its size). However, as
the amount of available information in the system increases,

LIFO sorting struggles to disseminate unique information,
while FIFO sorting continues to perform reasonably well,
scaling with the amount of information in the system.

This difference is caused by the oscillation of sending and
filtering actions performed by actors. Recall that actors will
not send information that they have already sent. As a result,
when actors receive a duplicate of a factoid that they have sent
before, they will use their time to simply remove this factoid
from their inbox and not send anything. In LIFO, recently seen
factoids are always on top of the inbox. This increases the
likelihood of receiving a duplicate of a factoid shortly after
sending it. In fact, many agents may be processing copies
of a the same small set of factoids, resulting in a type of
synchronization.

This type synchronization is akin to a large body of previous
work on synchronization in complex networks [8] [9]. In
particular, this synchronization is similar to epidemic flare-
ups, in which people become ill and recover around the
same times [10]. The key difference between the type of
synchronization in the complex network literature and our
work is the queueing of states. Rather than synchronizing on
a single state or oscillating between different states, we are
sychronizing on varing sets of states, in our case factoids, in a
sorted queue. The large number of possible states makes this
synchronization behavior hard to visualize. Instead, we look at
when actors are sending information (i.e. they have received a
new factoid) and when they are filtering information (i.e. they
must likely have a duplicate in their inbox). The graphs in the
bottom of Figure 1 (a) show this behavior. Notice that LIFO
is constantly jumping between all of the actors filtering (zero
actors sending) to majority of the network sending. This time
spent filtering prevents new information from being sent and
accessed.

In contrast, FIFO does not suffer from this synchronization
behavior. In the FIFO setting, actors are sending information
throughout the simulation, only reaching zero actors sending
when all of the information in the system has been processed.
For the LIFO setting to reach the point of all factoids being
processed, it will take much longer. Conceivably, we can think
of these two very different performances like springs, in which
the FIFO setting is a critically damped spring and the LIFO
setting is an almost completely undamped spring. This analogy
is certainly not perfect, but provides a high level way of
thinking about the differences between the two basic sorting
methods in a high traffic network.

2) Burst vs. Streaming Information Arrival: We now con-
sider streaming information arrival as shown in Figures 1
(b). Streaming information balances out the difference in
LIFO and FIFO sorting performance, as FIFO performance
worsens and LIFO performance improves. This result can
be explained as the breaking up of synchronization in LIFO
as new information being placed on top of an actor’s inbox
breaks her synchronization on a set of already sent or duplicate
factoids. This break in-turn provides new information to the
actor’s neighbors, effectively breaking up their synchronization
as well.



In the FIFO setting, information travels along paths in the
network until it is completely filtered out. The longer it stays in
the network, the more likely it will reach all the actors. Since,
FIFO sorting can get unique information out to users very
quickly, many actors will find their inboxes empty for some
time while waiting for new factoids to arrive. This waiting
creates small waves of sending and waiting. Hence, by the
end of a 10,000 step simulation, actors will have done fewer
send actions resulting in less information being shared.

It is important to note, the comparison between the burst
and stream information arrival patterns is not direct. In the
burst setting, all messages have the same amount of time in
the system, while in the stream setting, certain messages will
have a longer time in the system than others. For example,
if a new message from the outside enters the network at step
9800 of 10,000 total steps, it will only have 200 steps to be
diffused. In contrast a message that enters the system at the
very beginning will have all 10,000 steps to be diffused. Thus,
these two arrival patterns should be thought of as exclusive
network scenerios: a high traffic time and a normal low traffic
time. Both settings lend themselves to real-life behavior in
social networks, but are not directly comparable.

3) Single Message Branching Factor: To further illustrate
the difference between LIFO and FIFO inbox sorting meth-
ods, we view information cascades as branching processes.
Specifically, we define the “branching factor” of a process
as the average number of copies that an agent generates for
any message received in her inbox. This metric is calculated
for each message by counting the number of copies of that
message generated by every agent. If an agent forwards a
factoid, the count will be increased by the degree of that actor,
since agents broadcast messages in our model. If an agent
chooses not to forward a factoid, nothing will be added to
the count. This method for calculating the branching factor is
borrowed from [15]

In the burst setting, we note that LIFO proportionally creates
a large number of copies of some factoids (making them viral),
while the remaining factoids have very few copies. Of course,
in LIFO there are many more factoids with zero copies as
shown in Figure 1, but these are excluded in our analysis.
In other words, a higher proportion of factoids are forwarded
by many or almost all of the agents. FIFO on the other hand
creates a more diverse set of branching factors, but causes less
messages to go viral.

In the stream setting, both LIFO and FIFO’s average
branching factors are decreased due to actors doing fewer
send actions as described in section IV-2. LIFO still creates
many viral branching factors, but also slightly decreases the
number of facts that are copied zero times. This decrease
in messages copied zero times is not shown in the averages
displayed in Table II as messages sent zero times are excluded.
The branching factor distributions can be seen in Figure 2. In
Figure 2, we also exclude facts that were sent zero times as
we are interested in the facts that have been distributed.

In general, the branching factor of a process can be ana-
Iytically estimated. For FIFO sorting, this estimation is fairly

Setting Average Branching Factor =~ Maximum Branching Factor

LIFO Burst 2545 2560

FIFO Burst 1991 2560

LIFO Stream 2498 2560

FIFO Stream 1918 2560
TABLE 11

AVERAGE AND MAX BRANCHING FACTORS FOR EACH SORTING AND
INFORMATION ARRIVAL SETTING EXCLUDING MESSAGES THAT WERE
COPIED 0 TIMES

straight forward. Consider a single factoid f in the system
starting at agent a. Assume agents are connected through a
tree structure, abstracting out the possibility of cycle connec-
tions [15]. Agent a has a probabilty p; to forward f to her k
friends. Each of those & friends independently has probability
ps of forwarding f to each of his or her k friends. By inde-
pendence, this pattern continues with decreasing probability
as the depth of the cascade increases. Given enough time in
the simulation relative to the number of incoming factoids, all
factoids will be seen even in high traffic times.

For LIFO sorting, this estimation is slightly more complex.
For the sake of brevity, we will simply refer to [15] for
the LIFO branching factor analysis. It has been shown that
the number of copies is generally exponentially distributed
in scenarios involving cognitively bounded actors (i.e. lim-
ited number of actions at each time step). Furthermore, the
probability a message becoming “viral” increases as actors’
propensity to send increases.

A. Network Connectivity

Up to this point, we have not discussed the impact of the
underlying network of ties on information spread. To study
this problem, we run simulations on diameter-varying small
world networks using 2500 factoids in the system. Small world
networks are parameterized by a single “rewiring” probability
Pe. As p. increases, more “short-cuts” are created, which will
shrink the diameter of the graph and introduce small world
behavior, resulting in a completely random graph at p. = 1,
allowing us to vary the diameter of the graph without changing
its density [11].

As shown in Figure 3 (a), as a network’s diameter shrinks,
FIFO’s performance improves, while LIFO remains mostly
unchanged. FIFO’s propagation improvement is due to the
decrease in path lengths. As the probability that a message
is going to be sent along a long path decreases quickly, the
shorter path lengths are beneficial. LIFO sorting is generally
not affected by the length of the sending path because of
synchronization. Most facts are not sent along long paths and
a few facts are duplicated so heavily that they will almost
certainly be sent to the whole network. The effect is reduced
significantly for streaming for both LIFO and FIFO.

Next, we want to test the impact of network density on
sorting performance. We run simulations on density-varying
small world networks using 5000 factoids in the system. Small
world graphs are not only parameterized by a rewiring proba-
bility, but a starting number of neighbors for each node. This
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Fig. 3. Network diameter’s affect on FIFO and LIFO using small world
rewiring probabilities (smaller rewire probability = longer diameter)

allows us to vary the density of the graph without significantly
manipulating other parts of the networks structure.

As shown in Figure 4 (a), in a high traffic scenario, as a
network’s density increases, the performance of both LIFO and
FIFO decrease. This slow down in spreading novel information
is simply due to an increase in information overload. As all
actors degrees increase and their capacity to send is held stable,
more information will enter their inboxes than each can handle.

B. Removing Duplicate Messages

In continuing to better our understanding of networked
LIFO and FIFO sorting, we make slight additions to the basic
sorting algorithms. We now consider the performance change
of each sorting method when duplicate messages are removed
by the underlying system. We will call these sorting methods
LIFOND and FIFOND. In LIFOND, whenever a duplicate
message is received, it is put on top and all other copies are
removed; thus, maintaining the original last in first out order.
In FIFOND, the duplicate message is just dropped, leaving the
older copy in its previous location in the inbox queue.

As shown in Figure 5 and Figure 6, removing duplicate
messages effectively converges the performance differences
between LIFO and FIFO, making LIFO sorting perform
slightly better in the burst setting and FIFO sorting perform
slightly worse in the burst setting. In the stream setting,
LIFO sorting performs marginally better, and FIFO sorting is
unchanged. As previously discussed, LIFO sorting can cause
large stacks of duplicate or already sent information to build
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up, preventing the quick diffusion of novel information in the
network. Simply suppressing duplicate information combats
part of this issue. There is still a higher probability to see
a message that was already sent within a short time frame,
but now there are no duplicate copies stacking up. On the
other hand, in the burst setting, FIFO sorting is very slightly
harmed by the removal of duplicate information as there are
less chances to forward a piece of information, causing more
information to be filtered out quickly. Even more interestingly,
the oscillatory behavior of LIFOND and FIFOND is roughly
the same. This convergence further illustrates that the affect
of message duplication is an important differentiation between
the networked behavior of LIFO and FIFO sorting.

While these performance changes are small, they are con-
sistent through many test.

C. Degree Distribution and Forwarding Probability

Lastly, we consider a more realistic network scenario in
which 8192 actors are connected through a Kronecker graph.
Kronecker graphs are generated from many iterations of
Kronecker multiplication on an initial adjacency matrix with
itself. Due to the nature of Kronecker multiplication, the
adjacency matrix grows with every iteration. The final result
of generating a Kronecker graph displays many real world
network properties, such as, heavy tail degree distributions
and small diameters [14]. In this new setting, information
is streamed to actors at 36 messages per 5 time units, with
80,000 total messages over 10,000 steps. This can be thought
of as a relatively normal traffic time. When information enters
the system, facts are distributed to actors using a power-law
distribution. Along with this, actors forwarding probabilities
are uniformly distributed between 0.2 and 0.6 based on the
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Fig. 5. Number of facts known by an actor for different amount of
information in the network and number of actors sending information for

5000 factoids in the network over time for burst (top) and stream (bottom)
information arrival types using FIFOND/LIFOND inbox sorting methods.

retweet rate of Twitter users in a dataset found in [13]. We
run these simulations for several trials and take the average.
As shown in Figure 7, the knowledge growth and oscillation
patterns (oscillation patterns not explicitly shown) of both
LIFO and FIFO are similar to that of the stream arrival
tests found in Figure 1b. From previous experiments, we
know that the simulation time it takes for networks of similar
diameter to reach the same knowledge saturation point is
relative to the size of the network. Hence, as these larger
scale simulations are ran longer, we expect the performance to
continue in the same pattern as Figure 1b. These results being
almost identical to the Small-World network tests previously
discussed is surprising, as it suggests that both vastly different
degree distributions and network sizes have negligible impact
on the behavior of networked inbox sorting. Furthermore, this
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setup being more like a real-life social network in structure
and forwarding probabilities provides some robustness to the
other results shown in this paper.
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V. CONCLUSIONS AND FUTURE WORK

In conclusion, inbox sorting is a crucial factor in the
dissemination of information. Our findings show a complex
picture in which basic sorting algorithms in a network behave
very differently for different reasons. When using a classic
LIFO stack, agents are prone to becoming synchronized on
duplicate or already seen information. This becomes a problem
in bursty information arrival patterns, but seems to work well
for streaming information. When using a FIFO queue, agents
can gain significantly more diverse information out of the
box, especially in high traffic or bursty information arrival
scenarios. We find that FIFO is affected by the diameter of
network structure much more than LIFO is. While we do not
show here explicitly, our results remain the same for a large
number of network types such as Kronecker and Barabasi-
Albert graphs. In LIFO, many more copies of information
are generated than strictly necessary while in FIFO likely too
few are generated in information starved situations. Hence, the
ideal method will depend on the information generation and
consumption patterns of the users. Both of these classic sorting
mechanisms do not take into account a users preferences,
which is common of today’s social networks. Our work

illustrates that system level manipulations can help or harm
access of individuals to information. We aim to explore much
more intricate sorting mechanisms in future work, taking into
account a user’s preferences and the strength of ties. We
will continue to study impact of factors such as influencers
and homophily, and explore curation algorithms in feed-based
networks with the goal of improving the quality of information
in the network. While this study has some limitations, we hope
it can serve as a building block to diversify information in
networks using system level manipulations.
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